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Abstract

~‘A frequeacy-daomain stability criterion is pre-
seated, geaeralizing the well-known circle sta-
oility criterion to multiloop feedback systems
having bounded nonlinearity, parameter varia-
tions, and/or freguency-depeadent ignorance of
component dyanamics. Unlike previous general-
iza‘ions, the theory is not restricted to weakly-
coupled, diagonally dominant or nearly normal
svs*ems, Poteatial 2pplications include the
aaalysis »f feedback svstem integrity and malti-
loop fecdback system stability margins.,

1. Introduction

A Kkey stepinthe synthesis of robustly stable
feedback systems is the characterization of a
set of feedback laws that are stabilizing for
2very element of the set of pcssible plant dy-
namics. This type of information is precisely
what i> provided for single-loop feedback sys-
tems by such input-output stability criteria as
the Nyquist, Popov, and circle theorems. In-
deed, the practical merit of classical feedback
desizn procedures involving Nyquist loci, Bode
olo*s, and Nichols charts is in a large measure
directly a‘tributable to the fact that these design
procedures provide the designer with an easily
interpretable charcterization of such sets of
To5ustly sinble feedback laws. Available multi-
sariable input-output stability criteria such as
Rosenbrock's multivariable Nyquist theorem [1]
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and Zames' conic-relation and positivity stability
theorems [2] have led to useful characterizations
of sets of robustly stable feedback laws for only
a limited class of problems, viz. interconnec-
tions of dissipative systems [3], weakly coupled
interconnections of systemas [4] (including so-
called "'diagonally dominant" systems [3] - [7])
and "'nearly normal" systems [8)] (which can be
viewed as vector-space isomorphisms of weakly
coupled systems). It has beea argued convinc-
ingly by Rosenbrock and Cook [9] that an es-
pecially useful feedback design tool would be 2
more general multiloop frequency-domain sta-
bility criterion that inciudes diagonal dorainance
and normality results as special cases.

The main result of the preseat paper is a
stability result that may serve this purpose:
Theorem | is a multiloop generalization of the
circle stability criteriorn which does no* re-
quire diagonal-dominance, weak-coupling, norm-
ality, or near normality. The result allows the
frequency-domain testing of the stability of
muitiloop feedback systems with time-varying
nonlinearities, unknown-but-bosunded parameter
variations, and even singular perturbatioas.

The following notation is used: AT and x
denote respectively the transpoge of the matrix
A aad the vector x; A and x depote the
complex conjugate of the matrix A" and the
vector X respectively; the determinant of a
matrix A is denoted det(A): the Euclidian norm
of a vector x is  x Z4fx x R, denotes
nonnegative real numbers; the functional norm

X 1, and inner product <x,, x; > are defined
for functions x: R, *R® as

A
TX . = V<xv x >

where for any 3 and x,

"~

- T
<xl. X, > fg X (t)x_, (t) dt,

The space L,, (R, R” ) is defined as
(R_, RT3 JIx:r SRy <=
for each “€R } .
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Given any matrix A, the square-roots of the
eigenvalues of A° A are called the singular values
of A[10, pp. 5-11}. For any non-zeroMatrix A, we
use the notation amax(A’ to denote the largest sing-
ular value of A and 9,...(A)to denote the smallest
singular value of A; singular values arealways non-
negative real numbers since A" A is always posi-
tive semidefinite. For hermitian A (i.e., A =A%),
the aotation A\, .A) and A . (A)to denote respec-
tively the greatest and least eigenvalues of A —-
hermitian matrices have only real eigenvalues,
so ordering of eigeavalues is always possible via
the usual ordering of real numbers.

An npeza‘or is a mapping of functions into
{unctions; for example, a dynamical system map-
ping mputs x€Lje (R, R ) into outputs y€L,,
‘R,. R™ defines an ope ator. All operators con-
si de'ed in this paper are implicitly assumed_to be
mappings of L, (R, R ™) into L, (R,, R")
for some posxtwe integers nj an n-) ,» an opera-
tor His said to be nonanticipative i

(Hxp (t,) = (Hxy)(t))
for any ¢, and aay pair of functions x, and Xy

o
having the property that for ail t < to

X {t) = x(t);

i. e., a non aaticipative operator H is one having
the property that its instantaneous output Hx at
any time t, is independent of the values assumed
by the input x(t) a* future times t >t . We

say that an operator 4 mapping sxg—xals

x € L‘Z \R , R )mto signals Hx < I_.Z ‘R Rn’\
is Lo, - stable  if there exists a constaat k <°
such that for all x €L, R, R™ and TR,

PHx o sk s

II. Problem Formulation

Our results concern the input-output stability
of systems consisting of a dynamical LTI nega-
tive-feedback interconnection of m memoryless
time-varying nonlinear components and n dyn-
amical LT[ components. The system's equa-
tions thus take the following form (see Fig. 1):

Memoryless nonlinear components

vy lt) = hl tx) (), t)
: (2. 1)

ym(t) = hm(xm (t), t)

Dynamical LTI componeats
Y (s)= H (s) X (s)

P LR -1

m Pom mtn g (2.2)
Y (s)y= H_ (s) X (s)

m-n m-3 m+n

1 A torm ot global input-output stability, our
de.gntlon of L.2e - stable is ejuivalent to
stable ' [11] and to'finite gain stable'
(wnh respect to the L., norm) [12] when H
is a nonanticipative operator,

Dynamical LT[ interconnection

X(s) = - G(s)¥(s) + \L'(s))ﬂg(s) (2.3)
_ where
?1(8) 3(1(8) U,(s
s &L : X(s) = ; U(s) & ]
mS) Xore®! Yaerd®)
'vl(s) Gy 8 Gy nemy®)
vis) & | G & i 1
_V (s
nim Glm—m) I( Yoo (m_m’(mm,J
(2.4)
r———=1
4T ‘

|
IS:OMPONEN S '

! “ =) %
L“;“——'——‘:‘-‘: INTERCCNNECTION Kt -‘_—“i']

Fig. 1 The System

The indogenous variables Yi (t) and x. (t) are
the system 'outputs' and the exogenous vanables
u;j(t) and v.(t) are the system 'inputs', Each of
the 'components' (h (+}),..., hm, Hm«rl' e,

Hmyn) may itself be a MiMO system in general,
though our results seem to be most easily used

and interpreted when the components are SISO.

Our stability results do not require that we
have available an exact mathematical description
of the components, For each of the nonlinear
nondynamical elements, we assume only that

trices C, Ri , and S\ can be found such that
R R. and Sl are poshtwe definite and suchti:at
(h . B - o, (e) S Rpx (0 %o ety ]

for some ¢ > 0, all xi(ti, and all t

fi=1,..., m)

(2.5
For each of the n dynamical LTI componeats
Hi(s} (i = m:l, ..., m-n) we assume only

Y iias skl

o
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that H.(s) has a proper rational transfer function
ma‘rix and that proper rational transfer function
matricgs Ci(s), R.(s), and S; 1(8) can be found such
that R;(-ju) Ri(js) and ST(Jn) S;(jv) are positive
deiinite and have no poles on the 3 = jy axis and
such that Hx(’) - Cl(s) has no poles m{ s | Re(s)zo}
and

P . . . Y42
15, (e )(Hi(J;u JXGw ) - CGe) X (w ))ei
. . < 2 . 2
S IR0 XGo) 7 - e dX G| (2. 6)
for some ¢ > 0, all Xi(jm) and all w

(i=m+l,.... m+n).

For notational convenience, we define the follow-
ing block-diagonal matrices

4
C(s)':'diag(Cl,...,Cm. C_, ((8-en C (s))

m+n
(2.7)
R(s)Ediag(Rl...., R, Ro(sh....R_ A”)
(2.8)
Sis) =diag(Sl.-... S g1 (S)eeees smm(s))
(2.9)
Comments:

The conditions (2.5) - (2.5) can be interpre-
ted as saying that we are assuming knowledge
about each of the components is limited to an ap-
proximate LTI mode! (viz. C,} and bounds (de-
termined by (R,, S,)) on the c‘oarseness of the
approximation.

For the case of SISO componeats, the condi-
tions (2.5) and (2, 6) can be replaced respectively
by the simpler conditions

2
Ihi(xi(”'t) - c.lx,l(t)| 2

F) frpo-
=0 | ! (2.3Y
for some t >0, all x (tl #+ 0, and all t
|H (o) - (mfﬂr Go)f - e
(2. AN
for some ¢ >0 and all ‘w
where for all i = 1,..., n+m
ci = Ci (2.10)
-1 .
r_l = Risi (2. 1)

These SISO conditions are readily interpreted
graphically as shown in Fig. 2.

]

ii)
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(a) Nonlinear component satisfying (2. 5')

_— « H,(i0)
m \ e eljo)
(AT
Re
(AT
c liS}
*H(iS M

{b) Nvquist locus of LTI component
satisfying (2.5')

Fig., 2 SISO Components

II. Main Result

Qur main result is now stated,
Theorem 1 (Multiloop Circle Stability
Criterion):

Suppose that the system (2.1)-(2.4) is
L -stable for the case when

hi(xi,t) x Cixi (i=1...,m) ‘

3.1
H(s) = C.(s) (i=mdl,..., min). ’

Then, a sufficient condition for the system
{2.1) - (2.4) to be L, -stable for every col-
lection of hi( s, t)(i=1,..,m) and Hi(s)

(i = m+l,...,n) satisfying (2.5) and (2.0)
respectively is that any one of the following
conditions held for all real w

Ain (cHvIGH» p)’r S iS(j»){\BC(jw)G(ju))

-G (-jo)R (-j4IRGL) G(jur) 2 0
(3. 2a)

: 2 SN S o . : -l
*mi,,((c(-J*'HG l«-}"') Sl-ju ’3()""(5(.)")‘5 (J*‘)

-Rr (=jwr R(j¢ P) 2 g




. . -1, -1,
iii) amin(S(J'ﬂ)(C(J'JJ) + G (jo ))R (J-")) =1
{3.2¢)

iv) cmax(R(jx) Gliw) (I + C(ju)c(ju»)"s"aw,)s 1
(3. 2d)

Condition (3. 2a) 1s implied by (3. 2b)-(3, 2d) and,
when the inverses G~°, R™*, s-1 are defined,
conditions (3, 2a)-(3. 2d) are equivalent.

PROQF: See Appeadix
IV. Discussion

There are essentially two main conditions
which must be satisfied to conclude stability from
Theorem 1: (i) The system must be stable when
the uncertain nonlinear componeats h.(-,t) and
LTI components H,(s) are all replaced by the re-
spective LTI approximations Ci and C;(s); and,
(ii) the frequency-domain coadition (3. 2) must be
satisiied. The former condition can be verified
a variety of ways: for example, one may check
tkat the roots of the characteristic equation

de:(l + C(S)G(s)) = 0 4. 1)

all have negative real parts ; alternatively, one
may apply the rultivariable Nyquist criterion,
checking that the polar plot of the locus of
de* (C!’ju) G(ju)) encircles the point -1 + ;0
exactly once counterclockwise for each unstable
opexn-ioop polecfc_(s) G(s) (multiplicities counted)
{1i. {21}, The latter condition (3. 2) requires
that oae plot the variable ¢ . (+)or o {«)
verses & and verify that the a‘bpropriate tnegual-
ity ho!ds forall & ,

In the special case in which there is a single
scalar nonlinearity h, (x,,t) (so that m = | and
a = ), both of the conditions of Theorem i can be
verified by inspection of the polar plot of G(j»)
vs & . Stability for the special case hylx) ) =
is assured by the Nyquist stability criterion if
and only if G(j&) encircles -1 + j0 once inr each
unstable pole of G(s) as v increases from - ® to

=, Condition (3, 2) becomes

2 it C(s) G(s) has any 'decoapling zeroes' (i. e.
zncontroilable osr unobservahle pales), then
these will not be roots of (4. 1) and one tnust
check separately that these poles have negative
Teal parts ci. {14]

1
be —Tj»')—b.’ll
where
-1
r,= RlS
c] = Cl

i) if clZ - l'lZ >0
[+4 l'l
| GGe) + 55— 1 > | 5 | (4.3
Ztl -zl'l Cl -r
- <
iy if c] rl 0
Cl l'l
bGGe)+ 55— | < | 7 | (4. 3b)
ZC] -Zrl !'l - Cl
iii) if [ -r =0
m) i 1 1
. -1
Re(GUﬂ ;) > {+. 3c)
c, + lrl |

These conditions oa G(ju) are precisely the con-
ditions of the well-known circle stability cri-
terion (cf. {15]). It is this which motivates us to
refer to Theorem | as a "multiloop circle stability
criterion' despite the fact that in general no
circles are employed in verifying its conditions.

One can interpret the uncercainty bounds
(R., S.) as specifications for the gain margins
and phase margins cf tne system (2.1)-(2.4).
if ra=0, if H(s) ECi(.ﬂ {i=l,...,n} and if the
ccmponents are SISO, then under the conditions
of Theorem 1, the sysiem will remain stable
despite variations :n the individual comronent
fains of magnitudes as great as |r,(ju ! L}

,R_. /Sy ij) |, even when the variations occur
simuitanzously in all components, So, for ex-
arapie, the systam can tolerate simultanenus

gain variations or phase variations of at leas-

A Tgw

3 s —_— ) 4.4
GMi ias 2¢ log | S ], ¢b (4.4)

or
rajw

A i

2 ini in | —2—— 4.5)
BMi ini arcsin | GXTEY | (

e s




in cach of the respective comporent input chan-
nel's (i=l,...,n); i.e., the system has gain mar-
gins of at least Gyy. and phase margins of at
ieast J);; at the inputs to the respective com-
ponents Ci.(’) (i=1,..,,n). The quantity

(su'w) (cow + im) &l »))(4 0

a
km = omin

is the amount by which the uncertainty bouncing
matrices R; can be simultaceously increased
witkout violating the stability conditions >f The-
crem i the scalar km can be viewed as a
lower bound on the amount by which the system
(2. 1)-(2.4) exceeds the stability margia spsci-
fications (2.5)-:{2. 6}.

In general, the stability conditions
and ‘he estimate (4. §) of excess stability mar-
gin kpy, of Theorem ! will be conservative.
The conservativeness can usuaily be reduced by
multiplying equations (2. 5)-(2. 6) by appropri-
ateiy chosen positive scalars | o { and
| a; (jw) | respectively before applying Theorem
1. l'his has the net effect of subetituting 'weight-
2d' uncertainty tounding matrices (¥;R;, @;85;)
for the original matrices (R; ., Si ). Further
study is required to determine the extent to which
it will be practical to exploit such weighting to
reduce the conservativeness of Theorem 1.

V. Conclusions

The practical importance of our muitiloop
circle theorem is that it provides verifiable
sufficient conditions for the stability of multi-
loop feedback systems using ouly crude bounds
on system parameters, component frequency
responses, and nonlinearities. Fotential appli-
cations include the testing of system integrity
in the presence of actuator and/or sensor
failures (cf, [16] ) and the characterization of the
stability margins (e.g., gain & phase margin) of

multiloop feedback designs subject to simultaneous

perturbations in gain and phase in the feed>ack
loops. Thecrern 1 also plays a qu role in bound-

ing the response of systems with uncertain dy-
namics (22].

Fix,y, "

Appendix

In this appendix, Theorem | is proved using
the sector stability criterion of [17], 18], [19].
We begin by introducing some additional termin-
ology, and a relevant special case of the sector
stability criterion, viz. Theorem Al. We then
establish via several lemmas that the conditions
of Theorem |1 are sufficient to ensure that the
conditions of Theorem A) are satisfied.

Definition(LZe-Conq-.-,- ); strictly inside, outaide):

Given any three operators C, R, S, we define

A

Ly, ~Cone (G & 9% {tx »| Exy.m =0
foralT€ R (A1)
where +

s, 42
silsty-cxil”-

2
I R |l (A2)

and for all z, zl, zz

\’( z, 2 >T

.
f le (t) zt) defad)
0

4z fl.,. ay

< >
Fyr %2 7x
Given an operator H mapping signals x into
signals y, we say
L{ strictly inside I..,e -Cone(g. R. 5) (A5)
if there exists an ¢ > ) such that for every pair
(x,y) satisfying y = Hx

. )2 32 §2 2
IS (y-cxily s o Rx i - t(ll x o+ hvil,) (A6)
forall T€ R .
-

Given an operator ~u mapping signals y into
signals x, we say

(-g)I outside L, - Cone (C, R, S) (A7)

if for every pair (x,y) satisfying x =Gy we have

2

g2
i‘ § (Y'Ex) .l‘.' l; R x 5. (A8)

‘for allT € R .,
+

Theorem Al Let p be a positive integer;
let H (i=1,..., p) be operators mapping x into
¥ let H be the operator




Hyy,
EZ = . (A9)
H
=p'p
where
1
Yy = . (Al10)
YP
If there exist operators Si' Ei' éi (i=I,.a, P)
such that

H. strictly inside L., - Cone (C., R., S))

~i 2e ~io~L ~

forall i=1,...,p (All)
and

(-G)I outside L, -~ Cone(C, R, S). (Al2)

2e

then the system

Yy H

x =-G

(A13)

1< 1%

+v) £ u
is L"e stable.

Proof: The expression (A2) can be written

equivalently,
Et,y, M= < E\ v+ % Eny +E3,%%
(Al4)
where
‘Ell = £Zl= § {Al5)
Elz = -E + E (A16)
Ezz =-C-R . (A17)
Thus
. -C.-R.
Cone (G, R, §)) = Sector [~ et B
GR, /(218
(i=1,..., m+n)
and
s -C-R
Cone (E, ’3}3) = Sector . (Al9)
-CtR

By the composite system property of sectors
(cf., Lemma 6.1 (vi) of [18])and (Al}), it follows

t!‘xat
s SR
H strictly inside Sector . (A20)
~ S -C+R
5 C-R
G outside Sector . (A21)
- $ -CB

Theorem Al follows from Theorem 6.1 of [18])
(the sector stability criterion).

Theorem Al together with the following three
Lemmas, establish Theorem 1.

Lemma A2: Let h(x {t),t) be any function of
x(t) and t and let H be given by

(Hx)t) = h), t) . (A22)

Let C, R'. and S be matrices and let ,€' ’5,’5
be the operators defined by

(cx)t) = Cx(t) ¥x {(A23)

(Rx)t) = Rx(t) ¥x (A24)

(sy)w

[

Sy(t). *y. (A25)

Suppose st exists, thea

E strictly inside LZe — Cone (E, }_l. 5) {A26)

if and only if
ls(htxe). & - cxty) 1% < Irxw i
~elixer 2
¥ x(t). (A27)

Proof: Let y(t) = h(x(t),t). Suppose (A27)
holda Then,

dy @l = agxe} (A28)
where
‘max (R)
- = "min 3) + am“(C) . (A29)
Thus, taking
€ £
B e (A30)

we have that when (A27) holds, then




Isy-cx il

.c IS (aixe), D - Cxw it e
LiRz® 12 - e lx )f e
lirsmi®- caxm P

+iy® 12y a

[

n

Irxl? - € xl eivi?y.
(A31)

Conversely, when (A27) holds, then taking x(%)
to be the constant function x(t) 5x0 we have
that for some 8>0

Is (hixy . &) - € ) i

g 2
= +lls (Bx - cx) il

1 \ w e . .2 v a
< == (lrxi 2 - s (il Boivil ?)

= (lrxd P - s F)
S N R ) N L7 E L)

c

Lemma A3: lLet H, C, R. S be nonanticipa-
tive Lj,-8table linear-time-invariant operators
with respective rational transfer function m?tri-
ces H(s), C(s), R(s), S(s). Suppose that R~ (s)
exists and has no poles in Re(s) 20,

Then

B strictly inside L, —Cone(C,R.S$)
{A33)
if and only if
§ S (39 (H(59) - CGLYX (52) )7 < | RGY X (397
ceiixgui? (a3
for all X(j4 all w, and some ¢ >0

Proof: Let 5" denote the stable nonantici-
pative hTI operator having transfer function ma-
trix R (s). Suppose that (A34) holds and let

(RX)NE), if t 57
(A35)

z {t) =
1‘ 0 , ift>r7
and let Zr(j‘-q denote the Fourier transform of
z{t). Then, for all y = Hx we have
. |vz . 1
aSty~cxi% = Jsmx - cx )it
IS - Srx .2

17y

(by linearity)
= isH- OR Re )2

(since l}:l exists)

H . -l 42
=ilswm - OR =i
(by nonanticipativeness)
< fleu-08's @ e
0

(the integral exists since S, H, C, and g‘ue stable
-»

= f il 79 (H(B-C(jw ) R oy
- Z (i |IF do
{by Parseval's Theorem)

< [ Iz goit-es umzgat
- aw

(by (A34))

- f i 2gt e
9 2 K} 2
'5/0' NOR 2 xe) ¢ ae
(by Parseval's Theorem)

-

f il z_(t) iiz d+

L] T
-1 Wl
-of @@=z de
fo R

1)

0, |2

.l || z
II z, IIT

-€ i:E- zThT

1)

I 4 R n
IR=1"-€ ) K axi

(by nonanticipativeness of gl)

hrel 2o 1x 2

“

-

.2 ' 2 .
s Wrxil® -6 o) x 2 e By
(A36)
where €
£'= Y7 (A37)
and
@ = sup i'_g-‘_i‘:___ < ™
x, T it :i,
(A38)

(since H is stable)

Conversely suppose (A33) holds, Let X

and ub be arbitrary. Then, letting x(t) ~— 0

jugt
Xo e and T % e, we have trivially from

Parseval's Thesrem that




A

i Stiay) (HGH) - Clig)Xg il

. 2 \

<iiR(uy) X 12 - € (1% i+ HGay) x4 17 )
(A39)
=

Lemma A4: Let g, C, R, S be linear-time-
invariant operators with respective proper ration-
al transfer ﬁmctions H(s), C(s), R(s), S(s). Sup-
pose that S (s) exists and has a proper rational
transfer function matrix witﬂ no poles _iln Re(s)20.
Suppose that R, G(I+ C g) , and _§ are LZe
stable and nonanticipative, Then,

SiiRG) XoiF - € %017 .

{ .
(-G) outside Lze- Cone (c. R S) (A40)

if and only if anv one of the following conditions
hold for all real u

0 hp{(Eretin oem) T s sou (mcomcny

“min
T . T . . .
-G -j9 R(-j4) R(j®) G(J”)) 20 (Adla)

y TS WS 5 S S
ii) Amm«cwwc (G9)” 5" ju) St QAj)+G (5 9)
R R(j-») 20 (Ad1b)
cos . 5 » '][ :..) 4
iii) amin(S(Ju;(C(Jl) +G )(JW)) R {juw) 21 (Adlc)

-1 -1
s 3 5 3¢ i ] s
iv) cmax(R'(Ju’ Gija (i + i) G S(m) L.
{A4ld)

When G'l(jm) and R-%jw) exist, conditions (A4la)-
(A4ld) are equivalent.

Proof:

It is trivial to show that (A4la) is alwﬁys im-
plied bY (A41b) - (A4ld) and that, when G (jw)
and R (ju) exist, (A4la) - (A4ld) are equivaient.

Suppose that (A4la) holds. Let (x,y) by any

input-output psir satisfying x = -Gy ; let
v = S{y -Cx) (A42)
and let
vit) , f OSstsrT
stg (A43)
0 , otherwise .

Let V_(ju denote the Fourier transform of v_
7 I
Note that from (A4la), it follows that for all Vpul

. , _ IR C IR
v 42 - iRew Geu (L Ciw GUw) ™ 8w

v_ 9 a0, (Add)

Now,

. 2 -1 -1 2
iRyl +€T S Vil
A1l 42
o s v i

~

(

]

=]
'

1=
0
e

(L+

0

x
Q0

( by the nonanticiprtive_:iess of )
B G(I+CG) W §

‘{ 1( raggor'siv)ofa
- f " rew o (1+ C 9 G} 7t

v (jo Paw

by Parseval's Theorem
and the hypot_l':les es th_af

( R G(I+CG) . andS "
are 1, stable.

< [ ivalte
. . 2
SN P R B

= jIsty-¢x) ’.]TZ {A45)

Conversely, suppose that (A40) holds. Let
Y. and u_ be arbitrary, The letting y =Y el¥0t
ar?d T= »Owe have from (A40) and Parseva?‘s
Theorem that

: T : : 2
R0 )GG0 ) ¥y ™ S1S(mg) (1+Clin) Gl Y|

]

and hence (A4la) holds.

This completes the proof of Theorem 1.
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